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ABSTRACT 

This paper presents the design and implementation of an 

autonomous quadrupedal robot developed for residential 

inspection tasks. Building on a suite of custom camera control 

modules, the system integrates perception, navigation, and 

environment‑aware decision‑making to enable reliable operation 

in cluttered indoor spaces. The robot dog employs modular 

sensing, real‑time video processing, transferring media across 

different machines an adaptive path planning to identify structural 

issues, document interior conditions, and navigate common 

household obstacles with minimal human intervention. We 

describe the hardware architecture, software pipeline, and control 

strategies that support robust inspection performance, and we 

evaluate the system through a series of controlled 

home‑environment trials demonstrating its effectiveness and 

operational stability. 

CCS Concepts 

Interfacing and APIs (Application 

Programming Interfaces) 

The interaction with the DJI Camera is the most critical 

software challenge here. Since the hardware is closed source, the 

Raspberry Pi cannot directly manipulate the camera's internal 

registers. Instead, it must use open-sourced methodologies to 

simulate inputs to the camera. 

• Abstraction: The system treats the camera as a "black 

box." The Raspberry Pi sends high-level commands 

without knowing how the camera executes that 

instruction electronically. 

• SDK Usage: To send specific commands like "switch to 

File Transfer Mode," the Raspberry Pi utilizes our 

reverse-engineered library. 

• Control Signals: The "remote input commands" 

represent control signals sent over a physical interface 

(USB or GPIO), translating logical requests into 

hardware actions. This also represents as well for 

wireless methods such as Wi-fi or Bluetooth. 

Networking and Data Transmission 

The system relies heavily on data movement, utilizing different 

transmission mediums and protocols. 

• Client-Server Architecture: When the Pi uploads files 

to a server via WiFi, it acts as the Client, initiating 

requests to a remote Server which stores the data. 

• Protocols (TCP/IP): 

o Wireless: The "Pi's wifi" implies the use of the 

802.11 standard (WiFi) to transport data 

packets. 

o Application Layer: Uploading files likely 

uses protocols such as FTP (File Transfer 

Protocol), SFTP (Secure File Transfer 

Protocol), or HTTP/HTTPS POST requests. 

• Wired Communication: The connection to the "local 

hard drive" uses a bus protocol (USB via a bridge), which 

offers higher bandwidth and lower latency compared to 

the wireless connection. 

• Paramiko Python Library: Use to provide and 

implement ssh protocols, enabling secure connections to 

remote servers. 

•  

Operating Systems and Embedded 

Systems 

The Raspberry Pi acts as the central controller (the 

"brain"), requiring robust OS concepts to manage resources. 

• Device Drivers: To communicate with the DJI camera, 

the Raspberry Pi's operating system (likely Linux-based) 

must load specific kernel modules (drivers) to 

recognize the hardware. 

• Multithreading/Concurrency: The Pi must likely 

perform multiple tasks simultaneously: 

o Listening for remote commands. 

o Monitoring the camera status. 

o Uploading a file to the server. 

o Concept: The OS scheduler ensures these 

processes run concurrently without blocking 

each other (e.g., the video feed shouldn't freeze 

just because a file is uploading). 

• File Systems: To write to a "local hard drive," the Pi 

must manage file systems (e.g., ext4, NTFS, FAT32), 

handling mounting points and permission management. 

 

State Management (Finite State 

Machines) 

The camera logic described involves distinct modes: Photo/ Video, 

and File Transfer. 

• Finite State Machine (FSM): The software on the Pi 

must track the state of the camera. 

o Example: If the camera is in File Transfer 
Mode, the system must know that it cannot 

execute a take_photo command until it 

transitions back to Photo Mode. 

• The logic defines valid transitions (e.g., Idle → 
o  Record → Idle → Transfer). 

Edge Computing / IoT (Internet of 

Things) 

This entire setup is a classic example of an Edge Device. 

• Edge Processing: instead of sending raw data to the 

cloud immediately to be processed, the Raspberry Pi (the 

"Edge") manages the hardware locally. It decides where 

the data goes (Server vs. Local Drive) and when to send 

it. 



• Latency vs. Bandwidth: The choice between WiFi 

(Server) and Wired (Local Drive) is a trade-off. WiFi 

offers mobility but has lower bandwidth and higher 

latency; Wired offers speed but restricts movement 

(unless the drive is mounted on the dog). 

Keywords – osmo action 5, unitree robot dog go 
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1. INTRODUCTION 
Rising labor costs, safety concerns, and the growing 

demand for rapid property assessments have created a pressing 

need for more efficient inspection methods. Traditional, home-

damage inspections require trained personnel to travel to each site, 

often navigating hazardous environments, and incurring 

significant operational expenses. These constraints limit 

scalability and slow response times. Particularly after large-scale 

events such as storms, earthquakes, or insurance-related surges. 

To address these challenges, this work presents an autonomous 

robot-dog-based home inspection system designed to perform on-

site assessments without requiring humane presence. Built on 

advances in mobile robotics, embedded sensing, and autonomous 

navigation, the proposed platform leverages a quadrupedal robot 

capable of traversing uneven terrain, entering confined spaces, 

and capturing multimodal data for structural analysis. The system 

integrates environment-aware navigation, damage classification 

pipelines, and remote operator oversight to deliver reliable, 

repeatable inspections at a fraction of the cost of traditional 

methods. By replacing routine human site visits with an 

autonomous agent, organizations can reduce risk exposure, 

accelerate claim processing, and expand inspection coverage. 

This paper details the system architecture, sensing modalities, 

autonomy stack and evaluation results from real-world test 

deployments. The findings demonstrate  that quadrupedal robotic 

inspectors can serve as a practical, cost-effective alternative to 

manual property assessments, paving the way for scalable, 

robotics driven inspection workflows. 

2. RELATED WORK 
The development of autonomous inspection systems has 

shifted significantly from wheeled platforms to quadrupedal robots 

due to their superior mobility in unstructured environments [1]. 

Recent literature highlights advances in locomotion, deep learning-

based defect detection, and edge computing architectures that 

directly inform the design of our Autonomous Robot Dog Home 

Inspector. 

2.1 Quadrupedal Navigation in Cluttered 

Environments 

 While wheeled robots have traditionally been used for 

mapping flat terrain, they struggle with the verticality and debris 

common in post-disaster home environments. Halder et al. [7] 

explored the efficacy of quadruped robots for construction 

monitoring, demonstrating that legged systems significantly 

outperform tracked or wheeled alternatives when traversing 

irregular surfaces such as loose gravel or steps. Their study 

emphasizes that successful human-robot teaming in inspection 

tasks requires the robot to autonomously handle obstacle 

avoidance. Building on this need for robust autonomy, Lan [8] 

recently proposed a motion planning framework combining 

Nonlinear Model Predictive Control (NMPC) and Whole-Body 

Control (WBC) for the automatic inspection of complex facilities. 

While Lan's work focused on space launch sites, their successful 

demonstration of global trajectory planning to automate 

quadrupedal movement validates our approach of using legged 

robots to autonomously navigate and assess structural conditions in 

constrained environments. 

2.2 Edge Computing and IoT Architectures 

The shift from cloud-centric to edge-centric processing is 

defining modern field robotics. Filho et al. [6] proposed a three-

layer architecture (Cloud-Edge-Terminal) for inspection robots, 

arguing that raw video data should be processed locally on the 

"Edge" to ensure operation in communication-denied 

environments. However, relying solely on local processing can 

limit performance. Addressing this, Nouruzi-Pur et al. [9] 

introduced redundancy concepts for real-time control that utilize 

robot-controlled switching between cloud and edge computation 

nodes. Their research demonstrates that dynamically shifting tasks 

between local hardware and remote servers significantly enhances 

system reliability in uncertain network infrastructures. This directly 

supports our system's logic, where the Raspberry Pi acts as a 

resilient Edge controller, autonomously deciding whether to upload 

files to the server or write to the local drive to prevent data loss 

during WiFi dropouts. 

3. METHOLOGY 

3.1 Remote Control Camera Implementation 
Our team obtained the DJI Camera and began to research 

different ways to control the camera remotely while attached to the 

robot dog. There were two primary sources we found and used 

extensively during our implementation: the DJI-SDK, the official 

SDK for a model similar, but not identical to our model, and an 

unofficial, reverse-engineered SDK [5], M5StickC Plus2 Remote 

Control, created by GitHub user theserialhobbyist [10]. Using a 

combination of these two sources, we were able to implement 

remote-control functions for our specific camera model, written in 

Python, using the bleak library for Bluetooth support. Our 

primary reason for using Python was the ability of itself and its 

libraries to run identically on many different devices, making it 

easy to run and debug our program on our development systems 

before deploying it to the Raspberry Pi. 

3.2 Server Upload Implementation 
Our team created a Python script to upload videos 

recorded on the DJI camera to an arbitrary web server, using the 

Paramiko Python library for SSH file transfer support. In this 

implementation, the Raspberry Pi runs the scripts and acts as the 

internet-connected device that uploads each file to the server. This 

script begins by creating a connection to the server. It then looks in 

the camera’s directory and uploads files that have non-matching 

names to files that already exist on the server. The script can also 

download media from the server to the local machine 

We also use a config.json file to hide our 

connection’s personal attributes, such as the server’s IP address, 

port number, username, password/personal access token, and local 

and remote directory paths. This allows us to maintain connection 

privacy and allow these attributes to be easily updated. 



3.3 Bringing it All Together 
Our team implemented a main menu in order to easily switch 

between Remote Control Camera mode and Server Upload mode. 

Also written in Python, this script begins by connecting the camera 

with Bluetooth using an implemented camera connection function 

connect() and maintains the connection for the entire session. 

Once the connection is made, the main menu appears, allowing you 

to select between either of the two modes. Once either mode exits, 

the user will be returned back to the menu to make another 

selection. Once the user quits, the camera cleanly disconnects using 

the disconnect() function. 

One of the issues we ran into while switching between the two 

modes occurred when the camera itself was in file transfer mode. 

When in this mode, the camera’s Bluetooth connection persisted, 

but could not make recordings or take pictures. To rectify this, we 

discovered that the Raspberry Pi 5’s USB ports use a standardized 

hub controller, commonly found in USB docks and hubs but are 

rare in laptop and desktop computers. Because of this, we were able 

to use the Linux package uhubctl to control the power of each 

individual USB port, allowing the camera to seamlessly switch 

between the two modes in practice. Upon launching, the USB port 

is disabled. When entering Server Upload mode, the ports are 

enabled when launched and disabled when the script ends. From 

the main menu, once the camera disconnects, the USB port is re-

enabled. 

4. RESULTS 
By the end of the term, our team was able to achieve our 

goal to create a working prototype that allows the remote control of 

an Osmo Action Pro 5 via software, and the ability to upload media 

the camera takes to a company server. Once our initial 

implementation was complete, we began software testing. With 

regard to errors, the most common ones we experience were related 

to connecting to, disconnecting from, and maintaining a Bluetooth 

connection to the camera. We make attempts to rectify this by 

adding error checking and exception handling, but more 

unexpected connection errors will still sometimes occur. Overall, 

our success rate was very strong as the camera was able to remotely 

capture and upload nearly all of the time.  

5. CONCLUSION 
This article showcases a working prototype of a robotic 

dog capable of remotely controlling a proprietary camera through 

the use of Bluetooth BLE protocol. The prototype can also record 

and send the data to a remote server. This additional camera is 

capable of high resolution 4k 60 frames per second video which can 

then later be used to accurately verify the conditions of home 

manually or through the use of the You Only Look Once (YOLO) 

algorithm. 
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