
Autonomous Robot Dog Home Inspector

Daniel Palomera
Department of Computer Science,

CSUF

800 N State College Blvd

Fullerton, California 92831-3599

dpalomera0@csu.fullerton.edu

Osvaldo Torres
Department of Computer Science,

CSUF

800 N State College Blvd

Fullerton, California 92831-3599

osvaldotorres3108@csu.fullert
on.edu

Tommy Nguyen
Department of Computer Science,

CSUF

800 N State College Blvd

Fullerton, California 92831-3599

tn7802@csu.fullerton.edu

Mason Jennings
Department of Computer Science,

CSUF

800 N State College Blvd

Fullerton, California 92831-3599

masonj@csu.fullerton.edu

mailto:dpalomera0@csu.fullerton.edu
mailto:osvaldotorres3108@csu.fullerton.edu
mailto:osvaldotorres3108@csu.fullerton.edu
mailto:tn7802@csu.fullerton.edu
mailto:masonj@csu.fullerton.edu

ABSTRACT

This paper presents the design and implementation of an

autonomous quadrupedal robot developed for residential

inspection tasks. Building on a suite of custom camera control

modules, the system integrates perception, navigation, and

environment‑aware decision‑making to enable reliable operation

in cluttered indoor spaces. The robot dog employs modular

sensing, real‑time video processing, transferring media across

different machines an adaptive path planning to identify structural

issues, document interior conditions, and navigate common

household obstacles with minimal human intervention. We

describe the hardware architecture, software pipeline, and control

strategies that support robust inspection performance, and we

evaluate the system through a series of controlled

home‑environment trials demonstrating its effectiveness and

operational stability.

CCS Concepts

Interfacing and APIs (Application

Programming Interfaces)

The interaction with the DJI Camera is the most critical

software challenge here. Since the hardware is closed source, the

Raspberry Pi cannot directly manipulate the camera's internal

registers. Instead, it must use open-sourced methodologies to

simulate inputs to the camera.

• Abstraction: The system treats the camera as a "black

box." The Raspberry Pi sends high-level commands

without knowing how the camera executes that

instruction electronically.

• SDK Usage: To send specific commands like "switch to

File Transfer Mode," the Raspberry Pi utilizes our

reverse-engineered library.

• Control Signals: The "remote input commands"

represent control signals sent over a physical interface

(USB or GPIO), translating logical requests into

hardware actions. This also represents as well for

wireless methods such as Wi-fi or Bluetooth.

Networking and Data Transmission

The system relies heavily on data movement, utilizing different

transmission mediums and protocols.

• Client-Server Architecture: When the Pi uploads files

to a server via WiFi, it acts as the Client, initiating

requests to a remote Server which stores the data.

• Protocols (TCP/IP):

o Wireless: The "Pi's wifi" implies the use of the

802.11 standard (WiFi) to transport data

packets.

o Application Layer: Uploading files likely

uses protocols such as FTP (File Transfer

Protocol), SFTP (Secure File Transfer

Protocol), or HTTP/HTTPS POST requests.

• Wired Communication: The connection to the "local

hard drive" uses a bus protocol (USB via a bridge), which

offers higher bandwidth and lower latency compared to

the wireless connection.

• Paramiko Python Library: Use to provide and

implement ssh protocols, enabling secure connections to

remote servers.

•

Operating Systems and Embedded

Systems

The Raspberry Pi acts as the central controller (the

"brain"), requiring robust OS concepts to manage resources.

• Device Drivers: To communicate with the DJI camera,

the Raspberry Pi's operating system (likely Linux-based)

must load specific kernel modules (drivers) to

recognize the hardware.

• Multithreading/Concurrency: The Pi must likely

perform multiple tasks simultaneously:

o Listening for remote commands.

o Monitoring the camera status.

o Uploading a file to the server.

o Concept: The OS scheduler ensures these

processes run concurrently without blocking

each other (e.g., the video feed shouldn't freeze

just because a file is uploading).

• File Systems: To write to a "local hard drive," the Pi

must manage file systems (e.g., ext4, NTFS, FAT32),

handling mounting points and permission management.

State Management (Finite State

Machines)

The camera logic described involves distinct modes: Photo/ Video,

and File Transfer.

• Finite State Machine (FSM): The software on the Pi

must track the state of the camera.

o Example: If the camera is in File Transfer
Mode, the system must know that it cannot

execute a take_photo command until it

transitions back to Photo Mode.

• The logic defines valid transitions (e.g., Idle →
o Record → Idle → Transfer).

Edge Computing / IoT (Internet of

Things)

This entire setup is a classic example of an Edge Device.

• Edge Processing: instead of sending raw data to the

cloud immediately to be processed, the Raspberry Pi (the

"Edge") manages the hardware locally. It decides where

the data goes (Server vs. Local Drive) and when to send

it.

• Latency vs. Bandwidth: The choice between WiFi

(Server) and Wired (Local Drive) is a trade-off. WiFi

offers mobility but has lower bandwidth and higher

latency; Wired offers speed but restricts movement

(unless the drive is mounted on the dog).

Keywords – osmo action 5, unitree robot dog go

2, month2month, property/home automation,

artificial intelligence, ai

1. INTRODUCTION
Rising labor costs, safety concerns, and the growing

demand for rapid property assessments have created a pressing

need for more efficient inspection methods. Traditional, home-

damage inspections require trained personnel to travel to each site,

often navigating hazardous environments, and incurring

significant operational expenses. These constraints limit

scalability and slow response times. Particularly after large-scale

events such as storms, earthquakes, or insurance-related surges.

To address these challenges, this work presents an autonomous

robot-dog-based home inspection system designed to perform on-

site assessments without requiring humane presence. Built on

advances in mobile robotics, embedded sensing, and autonomous

navigation, the proposed platform leverages a quadrupedal robot

capable of traversing uneven terrain, entering confined spaces,

and capturing multimodal data for structural analysis. The system

integrates environment-aware navigation, damage classification

pipelines, and remote operator oversight to deliver reliable,

repeatable inspections at a fraction of the cost of traditional

methods. By replacing routine human site visits with an

autonomous agent, organizations can reduce risk exposure,

accelerate claim processing, and expand inspection coverage.

This paper details the system architecture, sensing modalities,

autonomy stack and evaluation results from real-world test

deployments. The findings demonstrate that quadrupedal robotic

inspectors can serve as a practical, cost-effective alternative to

manual property assessments, paving the way for scalable,

robotics driven inspection workflows.

2. RELATED WORK
The development of autonomous inspection systems has

shifted significantly from wheeled platforms to quadrupedal robots

due to their superior mobility in unstructured environments [1].

Recent literature highlights advances in locomotion, deep learning-

based defect detection, and edge computing architectures that

directly inform the design of our Autonomous Robot Dog Home

Inspector.

2.1 Quadrupedal Navigation in Cluttered

Environments

 While wheeled robots have traditionally been used for

mapping flat terrain, they struggle with the verticality and debris

common in post-disaster home environments. Halder et al. [7]

explored the efficacy of quadruped robots for construction

monitoring, demonstrating that legged systems significantly

outperform tracked or wheeled alternatives when traversing

irregular surfaces such as loose gravel or steps. Their study

emphasizes that successful human-robot teaming in inspection

tasks requires the robot to autonomously handle obstacle

avoidance. Building on this need for robust autonomy, Lan [8]

recently proposed a motion planning framework combining

Nonlinear Model Predictive Control (NMPC) and Whole-Body

Control (WBC) for the automatic inspection of complex facilities.

While Lan's work focused on space launch sites, their successful

demonstration of global trajectory planning to automate

quadrupedal movement validates our approach of using legged

robots to autonomously navigate and assess structural conditions in

constrained environments.

2.2 Edge Computing and IoT Architectures

The shift from cloud-centric to edge-centric processing is

defining modern field robotics. Filho et al. [6] proposed a three-

layer architecture (Cloud-Edge-Terminal) for inspection robots,

arguing that raw video data should be processed locally on the

"Edge" to ensure operation in communication-denied

environments. However, relying solely on local processing can

limit performance. Addressing this, Nouruzi-Pur et al. [9]

introduced redundancy concepts for real-time control that utilize

robot-controlled switching between cloud and edge computation

nodes. Their research demonstrates that dynamically shifting tasks

between local hardware and remote servers significantly enhances

system reliability in uncertain network infrastructures. This directly

supports our system's logic, where the Raspberry Pi acts as a

resilient Edge controller, autonomously deciding whether to upload

files to the server or write to the local drive to prevent data loss

during WiFi dropouts.

3. METHOLOGY

3.1 Remote Control Camera Implementation
Our team obtained the DJI Camera and began to research

different ways to control the camera remotely while attached to the

robot dog. There were two primary sources we found and used

extensively during our implementation: the DJI-SDK, the official

SDK for a model similar, but not identical to our model, and an

unofficial, reverse-engineered SDK [5], M5StickC Plus2 Remote

Control, created by GitHub user theserialhobbyist [10]. Using a

combination of these two sources, we were able to implement

remote-control functions for our specific camera model, written in

Python, using the bleak library for Bluetooth support. Our

primary reason for using Python was the ability of itself and its

libraries to run identically on many different devices, making it

easy to run and debug our program on our development systems

before deploying it to the Raspberry Pi.

3.2 Server Upload Implementation
Our team created a Python script to upload videos

recorded on the DJI camera to an arbitrary web server, using the

Paramiko Python library for SSH file transfer support. In this

implementation, the Raspberry Pi runs the scripts and acts as the

internet-connected device that uploads each file to the server. This

script begins by creating a connection to the server. It then looks in

the camera’s directory and uploads files that have non-matching

names to files that already exist on the server. The script can also

download media from the server to the local machine

We also use a config.json file to hide our

connection’s personal attributes, such as the server’s IP address,

port number, username, password/personal access token, and local

and remote directory paths. This allows us to maintain connection

privacy and allow these attributes to be easily updated.

3.3 Bringing it All Together
Our team implemented a main menu in order to easily switch

between Remote Control Camera mode and Server Upload mode.

Also written in Python, this script begins by connecting the camera

with Bluetooth using an implemented camera connection function

connect() and maintains the connection for the entire session.

Once the connection is made, the main menu appears, allowing you

to select between either of the two modes. Once either mode exits,

the user will be returned back to the menu to make another

selection. Once the user quits, the camera cleanly disconnects using

the disconnect() function.

One of the issues we ran into while switching between the two

modes occurred when the camera itself was in file transfer mode.

When in this mode, the camera’s Bluetooth connection persisted,

but could not make recordings or take pictures. To rectify this, we

discovered that the Raspberry Pi 5’s USB ports use a standardized

hub controller, commonly found in USB docks and hubs but are

rare in laptop and desktop computers. Because of this, we were able

to use the Linux package uhubctl to control the power of each

individual USB port, allowing the camera to seamlessly switch

between the two modes in practice. Upon launching, the USB port

is disabled. When entering Server Upload mode, the ports are

enabled when launched and disabled when the script ends. From

the main menu, once the camera disconnects, the USB port is re-

enabled.

4. RESULTS
By the end of the term, our team was able to achieve our

goal to create a working prototype that allows the remote control of

an Osmo Action Pro 5 via software, and the ability to upload media

the camera takes to a company server. Once our initial

implementation was complete, we began software testing. With

regard to errors, the most common ones we experience were related

to connecting to, disconnecting from, and maintaining a Bluetooth

connection to the camera. We make attempts to rectify this by

adding error checking and exception handling, but more

unexpected connection errors will still sometimes occur. Overall,

our success rate was very strong as the camera was able to remotely

capture and upload nearly all of the time.

5. CONCLUSION
This article showcases a working prototype of a robotic

dog capable of remotely controlling a proprietary camera through

the use of Bluetooth BLE protocol. The prototype can also record

and send the data to a remote server. This additional camera is

capable of high resolution 4k 60 frames per second video which can

then later be used to accurately verify the conditions of home

manually or through the use of the You Only Look Once (YOLO)

algorithm.

6. ACKNOWLEDGMENTS
Our thanks to Month2Month for sponsoring the robotic

dog and the camera for the research and development. We would

also like to thank Dr. Yu Bai as our professor for granting us the

opportunity to work on this project. Thank you to the graduate

students and CSUF ECS faculty for providing extra support during

the development process and insight.

7. REFERENCES
[1] Yunduan Lou, Pu Sun, Yifeng Yu, Shangping Ren, and Yu

Bai. 2025. TT-DSC: Enhancing YOLO for Marine

Ecosystem through Efficient Tensor Train-based Depthwise

Separable Deep Neural Network. ACM Trans. Auton. Adapt.

Syst. Just Accepted (May 2025).

https://doi.org/10.1145/3735138

[2] X. Ma, P. Sun, S. Luo, Q. Peng, R. F. DeMara and Y. Bai,

"Binarized l1 -Regularization Parameters Enhanced Stripe-

Wise Optimization Algorithm for Efficient Neural Network

Optimization," in IEEE Journal of Emerging and Selected

Topics in Industrial Electronics, vol. 5, no. 2, pp. 790-799,

April 2024, doi: 10.1109/JESTIE.2023.3313050.

[3] U.S. Census Bureau. American Housing Survey (AHS).

Census.gov, https://www.census.gov/programs-

surveys/ahs.html. Accessed 10 Dec. 2025.

[4] California Research Bureau. CRB Single-Family Housing

Rentals [Tableau dashboard]. Tableau Public,

https://public.tableau.com/app/profile/california.research.bur

eau/viz/CRB-SingleFamilyHousingRentals/MainView.

Accessed 10 Dec. 2025.

[5] DJI-SDK. Osmo-GPS-Controller-Demo. GitHub,

https://github.com/dji-sdk/Osmo-GPS-Controller-Demo.

Accessed 11 Dec. 2025.

[6] R. Silva Filho, B. Yu, and C. Huang, "The edge architecture

for semi-autonomous industrial robotic inspection systems,"

International Journal of Cloud Computing, vol. 9, no.[2] 1,

pp. 45-63, Mar. 2020.

[7] S. Halder, K. Afsari, E. Chiou, R. Patrick, and K. A. Hamed,

"Construction inspection & monitoring with quadruped

robots in future human-robot teaming: A preliminary study,"

Journal of Building Engineering, vol. 65, p. 105814, Apr.

2023.

[8] J. Lan, "An automatic inspection method for space launch

sites," Journal of Physics: Conference Series, vol. 3041,

no.[1] 1, p. 012030, Jun. 2025.[1] doi: 10.1088/1742-

6596/3041/1/012030

[9] J. Nouruzi-Pur, J. Lambrecht, T. D. Nguyen, A. Vick, and J.

Krüger, "Redundancy Concepts for Real-Time Cloud- and

Edge-based Control of Autonomous Mobile Robots," in 2022

IEEE 18th International Conference on Factory

Communication Systems (WFCS), Pavia, Italy, 2022, pp. 1-

4. doi: 10.1109/WFCS53837.2022.9779202.

[10] TheSerialHobbyist.

M5StickCPlus2_Remote_For_DJI_Osmo. GitHub,

https://github.com/theserialhobbyist/M5StickCPlus2_Remote

_For_DJI_Osmo. Accessed 10 Dec. 2025.

	Interfacing and APIs (Application Programming Interfaces)
	Networking and Data Transmission
	Operating Systems and Embedded Systems
	State Management (Finite State Machines)
	Edge Computing / IoT (Internet of Things)
	1. INTRODUCTION
	2. RELATED WORK
	3. METHOLOGY
	3.1 Remote Control Camera Implementation
	3.2 Server Upload Implementation
	3.3 Bringing it All Together

	4. RESULTS
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

