Autonomous Robot Dog Home Inspector

Daniel Palomera Tommy Nguyen
Department of Computer Science, Department of Computer Science,
CSUF CSUF
800 N State College Blvd 800 N State College Blvd

Fullerton, California 92831-3599 Fullerton, California 92831-3599
dpalomera0@csu.fullerton.edu tn7802@csu.fullerton.edu

Mason Jennings
Department of Computer Science,
CSUF
800 N State College Blvd
Fullerton, California 92831-3599

masonj@csu.fullerton.edu

Osvaldo Torres
Department of Computer Science,
CSUF
800 N State College Blvd
Fullerton, California 92831-3599
osvaldotorres3108@csu.fullert

on.edu

mailto:dpalomera0@csu.fullerton.edu
mailto:osvaldotorres3108@csu.fullerton.edu
mailto:osvaldotorres3108@csu.fullerton.edu
mailto:tn7802@csu.fullerton.edu
mailto:masonj@csu.fullerton.edu

ABSTRACT

This paper presents the design and implementation of an
autonomous quadrupedal robot developed for residential
inspection tasks. Building on a suite of custom camera control
modules, the system integrates perception, navigation, and
environment-aware decision-making to enable reliable operation
in cluttered indoor spaces. The robot dog employs modular
sensing, real-time video processing, transferring media across
different machines an adaptive path planning to identify structural
issues, document interior conditions, and navigate common
household obstacles with minimal human intervention. We
describe the hardware architecture, software pipeline, and control
strategies that support robust inspection performance, and we
evaluate the system through a series of controlled
home-environment trials demonstrating its effectiveness and
operational stability.

CCS Concepts
Interfacing and APIs (Application
Programming Interfaces)

The interaction with the DJI Camera is the most critical
software challenge here. Since the hardware is closed source, the
Raspberry Pi cannot directly manipulate the camera's internal
registers. Instead, it must use open-sourced methodologies to
simulate inputs to the camera.

e Abstraction: The system treats the camera as a "black
box." The Raspberry Pi sends high-level commands
without knowing how the camera executes that
instruction electronically.

e SDK Usage: To send specific commands like "switch to
File Transfer Mode," the Raspberry Pi utilizes our
reverse-engineered library.

e Control Signals: The "remote input commands"
represent control signals sent over a physical interface
(USB or GPIO), translating logical requests into
hardware actions. This also represents as well for
wireless methods such as Wi-fi or Bluetooth.

Networking and Data Transmission

The system relies heavily on data movement, utilizing different
transmission mediums and protocols.

e Client-Server Architecture: When the Pi uploads files
to a server via WiFi, it acts as the Client, initiating
requests to a remote Server which stores the data.

e Protocols (TCP/IP):

o Wireless: The "Pi's wifi" implies the use of the
802.11 standard (WiFi) to transport data
packets.

o Application Layer: Uploading files likely
uses protocols such as FTP (File Transfer
Protocol), SFTP (Secure File Transfer
Protocol), or HTTP/HTTPS POST requests.

e Wired Communication: The connection to the "local
hard drive" uses a bus protocol (USB via a bridge), which

offers higher bandwidth and lower latency compared to
the wireless connection.

e Paramiko Python Library: Use to provide and
implement ssh protocols, enabling secure connections to
remote servers.

Operating Systems and Embedded
Systems

The Raspberry Pi acts as the central controller (the
"brain"), requiring robust OS concepts to manage resources.

e Device Drivers: To communicate with the DJI camera,
the Raspberry Pi's operating system (likely Linux-based)
must load specific kernel modules (drivers) to
recognize the hardware.

e Multithreading/Concurrency: The Pi must likely
perform multiple tasks simultaneously:

Listening for remote commands.

Monitoring the camera status.

Uploading a file to the server.

Concept: The OS scheduler ensures these

processes run concurrently without blocking

each other (e.g., the video feed shouldn't freeze
just because a file is uploading).

e File Systems: To write to a "local hard drive," the Pi
must manage file systems (e.g., ext4, NTFS, FAT32),
handling mounting points and permission management.

O O O O

State Management (Finite State
Machines)

The camera logic described involves distinct modes: Photo/ Video,
and File Transfer.

e Finite State Machine (FSM): The software on the Pi
must track the state of the camera.
o Example: If the camera is in File Transfer
Mode, the system must know that it cannot
execute a take_photo command until it
transitions back to Photo Mode.
e The logic defines valid transitions (e.g., Idle —
o Record — Idle — Transfer).

Edge Computing / IoT (Internet of
Things)

This entire setup is a classic example of an Edge Device.

e Edge Processing: instead of sending raw data to the
cloud immediately to be processed, the Raspberry Pi (the
"Edge") manages the hardware locally. It decides where
the data goes (Server vs. Local Drive) and when to send
1t.

e Latency vs. Bandwidth: The choice between WiFi
(Server) and Wired (Local Drive) is a trade-off. WiFi
offers mobility but has lower bandwidth and higher
latency; Wired offers speed but restricts movement
(unless the drive is mounted on the dog).

Keywords — osmo action 5, unitree robot dog go
2, month2month, property/home automation,
artificial intelligence, ai

1. INTRODUCTION

Rising labor costs, safety concerns, and the growing
demand for rapid property assessments have created a pressing
need for more efficient inspection methods. Traditional, home-
damage inspections require trained personnel to travel to each site,
often navigating hazardous environments, and incurring
significant operational expenses. These constraints limit
scalability and slow response times. Particularly after large-scale
events such as storms, earthquakes, or insurance-related surges.
To address these challenges, this work presents an autonomous
robot-dog-based home inspection system designed to perform on-
site assessments without requiring humane presence. Built on
advances in mobile robotics, embedded sensing, and autonomous
navigation, the proposed platform leverages a quadrupedal robot
capable of traversing uneven terrain, entering confined spaces,
and capturing multimodal data for structural analysis. The system
integrates environment-aware navigation, damage classification
pipelines, and remote operator oversight to deliver reliable,
repeatable inspections at a fraction of the cost of traditional
methods. By replacing routine human site visits with an
autonomous agent, organizations can reduce risk exposure,
accelerate claim processing, and expand inspection coverage.

This paper details the system architecture, sensing modalities,
autonomy stack and evaluation results from real-world test
deployments. The findings demonstrate that quadrupedal robotic
inspectors can serve as a practical, cost-effective alternative to
manual property assessments, paving the way for scalable,
robotics driven inspection workflows.

2. RELATED WORK

The development of autonomous inspection systems has
shifted significantly from wheeled platforms to quadrupedal robots
due to their superior mobility in unstructured environments [1].
Recent literature highlights advances in locomotion, deep learning-
based defect detection, and edge computing architectures that
directly inform the design of our Autonomous Robot Dog Home
Inspector.

2.1 Quadrupedal Navigation in Cluttered
Environments

While wheeled robots have traditionally been used for
mapping flat terrain, they struggle with the verticality and debris
common in post-disaster home environments. Halder et al. [7]
explored the efficacy of quadruped robots for construction
monitoring, demonstrating that legged systems significantly
outperform tracked or wheeled alternatives when traversing
irregular surfaces such as loose gravel or steps. Their study
emphasizes that successful human-robot teaming in inspection
tasks requires the robot to autonomously handle obstacle
avoidance. Building on this need for robust autonomy, Lan [§]

recently proposed a motion planning framework combining
Nonlinear Model Predictive Control (NMPC) and Whole-Body
Control (WBC) for the automatic inspection of complex facilities.
While Lan's work focused on space launch sites, their successful
demonstration of global trajectory planning to automate
quadrupedal movement validates our approach of using legged
robots to autonomously navigate and assess structural conditions in
constrained environments.

2.2 Edge Computing and IoT Architectures

The shift from cloud-centric to edge-centric processing is
defining modern field robotics. Filho et al. [6] proposed a three-
layer architecture (Cloud-Edge-Terminal) for inspection robots,
arguing that raw video data should be processed locally on the
"Edge" to ensure operation in communication-denied
environments. However, relying solely on local processing can
limit performance. Addressing this, Nouruzi-Pur et al. [9]
introduced redundancy concepts for real-time control that utilize
robot-controlled switching between cloud and edge computation
nodes. Their research demonstrates that dynamically shifting tasks
between local hardware and remote servers significantly enhances
system reliability in uncertain network infrastructures. This directly
supports our system's logic, where the Raspberry Pi acts as a
resilient Edge controller, autonomously deciding whether to upload
files to the server or write to the local drive to prevent data loss
during WiFi dropouts.

3. METHOLOGY

3.1 Remote Control Camera Implementation

Our team obtained the DJI Camera and began to research
different ways to control the camera remotely while attached to the
robot dog. There were two primary sources we found and used
extensively during our implementation: the DJI-SDK, the official
SDK for a model similar, but not identical to our model, and an
unofficial, reverse-engineered SDK [5], M5StickC Plus2 Remote
Control, created by GitHub user theserialhobbyist [10]. Using a
combination of these two sources, we were able to implement
remote-control functions for our specific camera model, written in
Python, using the bleak library for Bluetooth support. Our
primary reason for using Python was the ability of itself and its
libraries to run identically on many different devices, making it
easy to run and debug our program on our development systems
before deploying it to the Raspberry Pi.

3.2 Server Upload Implementation

Our team created a Python script to upload videos
recorded on the DJI camera to an arbitrary web server, using the
Paramiko Python library for SSH file transfer support. In this
implementation, the Raspberry Pi runs the scripts and acts as the
internet-connected device that uploads each file to the server. This
script begins by creating a connection to the server. It then looks in
the camera’s directory and uploads files that have non-matching
names to files that already exist on the server. The script can also
download media from the server to the local machine

We also use a config.json file to hide our
connection’s personal attributes, such as the server’s IP address,
port number, username, password/personal access token, and local
and remote directory paths. This allows us to maintain connection
privacy and allow these attributes to be easily updated.

3.3 Bringing it All Together

Our team implemented a main menu in order to easily switch
between Remote Control Camera mode and Server Upload mode.
Also written in Python, this script begins by connecting the camera
with Bluetooth using an implemented camera connection function
connect() and maintains the connection for the entire session.
Once the connection is made, the main menu appears, allowing you
to select between either of the two modes. Once either mode exits,
the user will be returned back to the menu to make another
selection. Once the user quits, the camera cleanly disconnects using
the disconnect () function.

One of the issues we ran into while switching between the two
modes occurred when the camera itself was in file transfer mode.
When in this mode, the camera’s Bluetooth connection persisted,
but could not make recordings or take pictures. To rectify this, we
discovered that the Raspberry Pi 5’s USB ports use a standardized
hub controller, commonly found in USB docks and hubs but are
rare in laptop and desktop computers. Because of this, we were able
to use the Linux package uhubctl to control the power of each
individual USB port, allowing the camera to seamlessly switch
between the two modes in practice. Upon launching, the USB port
is disabled. When entering Server Upload mode, the ports are
enabled when launched and disabled when the script ends. From
the main menu, once the camera disconnects, the USB port is re-
enabled.

4. RESULTS

By the end of the term, our team was able to achieve our
goal to create a working prototype that allows the remote control of
an Osmo Action Pro 5 via software, and the ability to upload media
the camera takes to a company server. Once our initial
implementation was complete, we began software testing. With
regard to errors, the most common ones we experience were related
to connecting to, disconnecting from, and maintaining a Bluetooth
connection to the camera. We make attempts to rectify this by
adding error checking and exception handling, but more
unexpected connection errors will still sometimes occur. Overall,
our success rate was very strong as the camera was able to remotely
capture and upload nearly all of the time.

5. CONCLUSION

This article showcases a working prototype of a robotic
dog capable of remotely controlling a proprietary camera through
the use of Bluetooth BLE protocol. The prototype can also record
and send the data to a remote server. This additional camera is
capable of high resolution 4k 60 frames per second video which can
then later be used to accurately verify the conditions of home
manually or through the use of the You Only Look Once (YOLO)
algorithm.

6. ACKNOWLEDGMENTS

Our thanks to Month2Month for sponsoring the robotic
dog and the camera for the research and development. We would
also like to thank Dr. Yu Bai as our professor for granting us the
opportunity to work on this project. Thank you to the graduate

students and CSUF ECS faculty for providing extra support during
the development process and insight.

7. REFERENCES

[1] Yunduan Lou, Pu Sun, Yifeng Yu, Shangping Ren, and Yu
Bai. 2025. TT-DSC: Enhancing YOLO for Marine
Ecosystem through Efficient Tensor Train-based Depthwise
Separable Deep Neural Network. ACM Trans. Auton. Adapt.
Syst. Just Accepted (May 2025).
https://doi.org/10.1145/3735138

[2] X.Ma, P. Sun, S. Luo, Q. Peng, R. F. DeMara and Y. Bai,
"Binarized 11 -Regularization Parameters Enhanced Stripe-
Wise Optimization Algorithm for Efficient Neural Network
Optimization," in IEEE Journal of Emerging and Selected
Topics in Industrial Electronics, vol. 5, no. 2, pp. 790-799,
April 2024, doi: 10.1109/JESTIE.2023.3313050.

[3] U.S. Census Bureau. American Housing Survey (AHS).
Census.gov, https://www.census.gov/programs-
surveys/ahs.html. Accessed 10 Dec. 2025.

[4] California Research Bureau. CRB Single-Family Housing
Rentals [Tableau dashboard]. Tableau Public,
https://public.tableau.com/app/profile/california.research.bur
eau/viz/CRB-SingleFamilyHousingRentals/MainView.
Accessed 10 Dec. 2025.

[5] DIJI-SDK. Osmo-GPS-Controller-Demo. GitHub,
https://github.com/dji-sdk/Osmo-GPS-Controller-Demo.
Accessed 11 Dec. 2025.

[6] R. Silva Filho, B. Yu, and C. Huang, "The edge architecture
for semi-autonomous industrial robotic inspection systems,"
International Journal of Cloud Computing, vol. 9, no.[2] 1,
pp. 45-63, Mar. 2020.

[71 S. Halder, K. Afsari, E. Chiou, R. Patrick, and K. A. Hamed,
"Construction inspection & monitoring with quadruped
robots in future human-robot teaming: A preliminary study,"
Journal of Building Engineering, vol. 65, p. 105814, Apr.
2023.

[8] J. Lan, "An automatic inspection method for space launch
sites," Journal of Physics: Conference Series, vol. 3041,
no.[1] 1, p. 012030, Jun. 2025.[1] doi: 10.1088/1742-
6596/3041/1/012030

[9] J. Nouruzi-Pur, J. Lambrecht, T. D. Nguyen, A. Vick, and J.
Kriiger, "Redundancy Concepts for Real-Time Cloud- and
Edge-based Control of Autonomous Mobile Robots," in 2022
IEEE 18th International Conference on Factory
Communication Systems (WFCS), Pavia, Italy, 2022, pp. 1-
4. doi: 10.1109/WFCS53837.2022.9779202.

[10] TheSerialHobbyist.
M5StickCPlus2_Remote For DJI_Osmo. GitHub,
https://github.com/theserialhobbyist/M5StickCPlus2 Remote
_For DJI Osmo. Accessed 10 Dec. 2025.

	Interfacing and APIs (Application Programming Interfaces)
	Networking and Data Transmission
	Operating Systems and Embedded Systems
	State Management (Finite State Machines)
	Edge Computing / IoT (Internet of Things)
	1. INTRODUCTION
	2. RELATED WORK
	3. METHOLOGY
	3.1 Remote Control Camera Implementation
	3.2 Server Upload Implementation
	3.3 Bringing it All Together

	4. RESULTS
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

